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SUMMARY 
In this paper a parallel multigrid finite volume solver for the prediction of steady and unsteady flows in complex 
geometries is presented. For the handling of the complexity of the geometry and for the parallelization a unified 
approach connected with the concept of block-stmctured grids is employed. The parallel implementation is based 
on grid partitioning with automatic load balancing and follows the message-passing concept, ensuring a high 
degree of portability. A high numerical efficiency is obtained by a non-linear multigrid method with a pressure 
correction scheme as smoother. 

By a number of numerical experiments on various parallel computers the method is investigated with respect to 
its numerical and parallel efficiency. The results illustrate that the high performance of the underlying sequential 
multigrid algorithm can largely be retained in the parallel implementation and that the proposed method is well 
suited for solving complex flow problems on parallel computers with high efficiency. 
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1. INTRODUCTION 

The numerical simulation of practically relevant flows often involves the handling of complex 
geometries and complex physical and chemical phenomena requiring the use of very f i e  grids and 
small time steps in order to achieve the necessary numerical accuracy. In-recent years intensive 
research has been undertaken to improve the performance of flow computations in order to enlarge 
their applicability for a cost-effective solution of practically relevant flow problems. These 
improvements concern both acceleration by the use of more efficient solution algorithms such as 
multigrid methods (see e.g. References 1-3) as well as acceleration by the use of more efficient 
computer hardware such as high-performance parallel computers (see e.g. References 4 and 5).  In this 
paper a numerical solution method for the incompressible Navier-Stokes equations is presented which 
combines efficient numerical techniques and parallel computing. A similar procedure for steady flows 
in simple orthogonal geometries is given by Perid: and Schreck.6 

The underlying numerical scheme is based on a procedure described by PeriC: consisting of a fully 
conservative second-order finite volume space discretization with a collocated arrangement of 
variables on non-orthogonal grids, a pressure correction method of the SIMPLE type for the iterative 
coupling of velocity and pressure and an iterative ILU decomposition method for the solution of the 
sparse linear systems for velocity components, pressure correction and temperature. For time 
discretization an implicit second-order scheme is employed, while a non-linear multigrid scheme, in 
which the pressure correction method acts as a smoother on the different grid levels, is used for 
convergence acceleration. 
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For the treatment of complex geometries and as a basis for the parallelization of the method by 
means of a grid-partitioning technique, the concept of block-structured grids is used. The block- 
structuring approach is advantageous for several reasons. 

1. Complex geometries can be modelled easily. 
2. Numerically efficient ‘structured’ algorithms can be used within each block. 
3. A natural basis for the parallelization of the solution methods is provided. 
4. Regions with different material properties (e.g. solid/liquid problems) or problems requiring 

various grid systems moving against each other can be handled in a straightforward way. 

The block-structuring approach can be viewed as a compromise between flexible unstructured grids 
and numerically efficient structured grids. 

The parallelization of the method is achieved by a grid-partitioning technique based on the block- 
structured grids. Depending on the number of processors, the block structure suggested by the 
geometry is restructured by an automatic load-balancing procedure such that the resulting subdomains 
can be assigned suitably to the individual processors. The major objective of the parallelization strategy 
was to preserve the high numerical efficiency of the sequential method in the parallel implementation. 
Therefore, in particular, the parallel multigrid method is implemented globally, i.e. without being 
affected by the grid partitioning. This ensures a close coupling of the subdomains and only a slight 
deterioration of the numerical efficiency compared with the corresponding sequential algorithm can be 
observed. 

By a variety of numerical experiments for steady and unsteady flows the performance of our parallel 
algorithm is studied. These include investigations of the interdependence of the grid size, the time step 
size, the number of processors, the multigrid algorithm, the grid partitioning and the performance data 
of the parallel computer with respect to numerical and parallel efficiency. The results indicate that 
parallel computers combined with advanced numerical methods can yield the computational 
performance required for an efficient, accurate and reliable solution of practical flow problems in 
engineering and science. 

We remark that the employed numerical technique has already been applied successfully to a variety 
of practical flow problems (see e.g. References 8-11). In this paper we concentrate more on the 
methodological aspects of the method to illustrate the intrinsic properties of the employed solution 
techniques. We restrict ourselves to two-dimensional laminar incompressible flow problems, but 
mention that a generalization of the underlying concepts to three-dimensional, turbulent and/or 
compressible flow is straightforward (indications with respect to the latter are given e.g. by Demirdzik 
et a[.‘*). 

2. GOVERNING EQUATIONS AND DISCRETIZATION 

We consider the laminar non-isothermal time-dependent flow of an incompressible Newtonian fluid in 
an arbitrary two-dimensional domain. The basic conservation equations governing transport of mass, 
momentum and energy are given by 
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where v = (v , ,  v2) is the velocity vector with respect to Cartesian coordinates (XI, xz), t is the time, p is 
the density, p is the dynamic viscosity, Pr is the Prandtl number, p is the pressure, T is the temperature, 
g = (g l ,  g2) is the gravitational acceleration vector, /? is the coefficient of thermal expansion and To is a 
reference temperature at which p, Pr and the reference density p o  are defined. Within the above 
formulation the Boussinesq approximation is assumed (see e.g. Reference 13), which in no way is 
crucial for the derivation of the method below. It is only chosen here because of its ease of 
presentation. 

In order to apply the above system of partial differential equations, it has to be completed with some 
boundary and initial conditions for v and Tactually defining the flow problem. The boundary and 
initial conditions for the pressure p are then already determined and must not be additionally specified. 

2.1. Spatial and tempoml discmtization 

For the spatial discretization of (1x3) a finite volume method with a collocated arrangement of 
variables is employed. The basic procedure is described in detail by DemirdZiC and so only a 
brief summary is given here. 

The solution domain is discretized into quadrilateral (in general non-orthogonal) finite volume cells. 
The transport equations ( 1 x 3 )  are then integrated over these control volumes (CVs), leading, after the 
application of the Gauss theorem, to a balance equation for the fluxes through the CV faces and the 
volumetric sources. The convection and diffusion contributions to the fluxes are evaluated using a 
central differencing scheme, which for the convective part is implemented using the deferred 
correction approach proposed by Khosla and Rubin." The evaluation of the volumetric sources is 
performed by approximating the source term by its value at the centre of the CV 

For the time discretization the so-called &method (see e.g. Reference 16) is employed. Applying the 
&method to the system of ordinary differential equations resulting from the spatial discretization, 
approximations 4, & and q to the solution of (1 X3) at the time level t,, = nAt (n = 1, 2, . . .) are 
defined as solutions of non-linear algebraic systems of the form 

LhG = 0, (4) 

4 8At[Ah(G)G -t Ghpi -k FhT:] = 4-l 4- (8 - l)At[Ah(v",-')4-' 4- GhP;-' -k F h C - ' ] ,  ( 5 )  

T' + eAtBh(4)Ti = Ti-' + (8 - l)AtBh(G-l)T;-'. (6) 
The discrete 0peratOI-S Ah, Bh, Gk, Fh and Lh are defined according to the Spatid discretization 

described above, including the corresponding discretization of the boundary conditions. The parameter 
h is a measure of the spatial resolution (e.g. the maximum CV diameter) and At > 0 is the time step. 
The parameter 8 E (0, 11 is a blending factor for the explicit and implicit contributions of the time 
discretization. We remark that the cases 8 = 1 and 0.5 correspond to the first-order fully implicit Euler 
scheme and the second-order implicit Crank-Nicolson scheme respectively. Both methods are 
unconditionally stable, but it is well known that for spatially non-smooth solutions the Crank-Nicolson 
scheme may cause numerical oscillations (see e.g. Reference 16), while the implicit Euler scheme does 
not show such a behaviour (strong A-stability). Thus varying 8 within the interval r0-5, 11 also gives 
the possibility to control the stability of the scheme. 

The time-stepping process defined by ( 4 x 6 )  is started from the initial values 

(7) 

where voh and Toh are suitable spatial approximations of the initial values given for v and T. Assuming 
that * - I ,  f l - l  and q - l  are already computed, we are faced with the problem of solving the non-linear 
system ( 4 x 6 )  for 4, & and T i .  For this a non-linear full approximation multigrid scheme with a 

0 vh = vOh 1 = Toh, Ph = 0, 0 
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pressure correction algorithm of the SIMPLE type as a smoother is employed. Before describing the 
multigrid technique, we will take a closer look at the smoother applied on the different grid levels. 

2.2. Pressure correction smoother 

The employed smoothing procedure for the coupled set of non-linear equations (4H6) is based on 
the well-known SIMPLE algorithm proposed by Patankar and Spalding." Because various 
modifications to the original have been introduced and many variants exist in the literature, we 
describe the approach employed here in a little bit more detail. A similar procedure for steady problems 
is described by Pen6 et aZ.'* 

In the following, one iteration step k - 1 + k is described, assuming that I$vk- ' ,  pisk-' and TlSk-l 
are already computed. The determination of 4vk, pivk and TlVk is done in several steps, leading to a 
decoupling with respect to the different variables. We first introduce a splitting of Ah of the form 

h( h Dh + A::-' (8) A p - 1 )  = An.k-1 +A;;:-' 

into the diagonal part A::-' and off-diagonal parts A$' and A;:-' corresponding to orthogonal and 
non-orthogonal (cross-derivative) contributions of the space discretization respectively. The splitting is 
illustrated in Figure 1, showing the assignment for a CV with its eight neighbours involved in the local 
discretization. 

is obtained by solving the momentum 
equation (5) with the pressure term, the temperature term and the matrix coefficients formed with 
values of the preceding iteration k - 1, treating the term with A;;-' explicitly and introducing an 
underrelaxation: 

In a first step an intermediate approximation ~ i * ~ - ~ / ~  to 

,,isk-1/2 + eAt(A;:-l + a , ~ ~ - l ) v ~ k - 1 / 2  - - a,,S:i' + (1 - a,)(vi*"-' + 8AfA$-'I$'k-') 

- cc,eAt(A$'vi*"-' + Ghp;qk-' + F h Tnvk-I h ). (9) 

Here the underrelaxation factor a, is in the interval (0, 11 and, for abbreviation, in S:;' all terms of (5) 
containing only values from the preceding time level n - 1 which are not affected by the iteration 
process are summarized: 

= 4-l + (6 - l)ht[Ah(4-')4-'Ghp;-' 4- FhT;-']. (10) 
Following the spirit of a pressure correction approach, in a second step we are now looking for 

corrections -'*' and qSk to obtain the new pressure p ipk  =piqk-'  +RVk and the new velocity 
v".k h = v;'-@+ qSk exactly fulfilling the discrete continuity equation (4). For this a momentum 
equation for < v k  of the form 

v'',~ h + BAtA$'v~" = (1 - a,)(4*"-' + 8AtA:L-1v:k-1) + a,S:il 

- a,e~t(A;;,k-l ,,;.k- 112 + A::- I (k- 1 + GhpiVk + FhT;'-') (1 1) 

Figure 1 .  Splitting of the operator A,, into orthogonal and non-orthogonal offdiagonai parts and a diagonal part 
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is considered, which differs from the one for v:*~-''~, i.e. (9), by the treatment of the term with A;;-' 
and by taking the pressure term at the new iteration level k. Now, subtracting (9) from (1 1) yields 

xsk + t9At@ji-'i$vk = -a,BAtGhj:'k, (12) 

where the overbar on the operators indicates the selective interpolation technique used for making the 
cell face velocities dependent on the nodal pressures, which is necessary to avoid oscillatory solutions 
that may occur owing to the non-staggered grid arrangement." Equation (12) represents an explicit 
expression for the new velocity in terms of the pressure correction. By applying the operator Lh to both 
sides of (1 2) and talung into account the validity of the continuity equation (4) for ( * k ,  an equation for 
j ivk is obtained: 

-n.k L ,,n.k-1/2 + L p . k - l L  ,,n.k-I/2 
- L h G h P h  - a v e ~ t  h h Dh h h a,  

Equation (13) corresponds to a discrete Poisson equation with homogeneous Neumann boundary 
conditions for j i3k. To keep the structure of the pressure correction equation the same as for the 
discrete momentum equation (9) and to improve its diagonal dominance, the non-orthogonal part of 
Ch := L h G h  is neglected (see e.g. Reference 20) andj;.' is computed from (13) with c,, replaced by 
CDh + COh using a splitting analogous to that in (8). If the grid is highly non-orthogonal, the influence 
of the neglected pressure cross-derivatives can be accounted for by the solution of a second pressure 
correction equation similar to that in the PIS0 algorithm to account for the influence of neglected 
velocity corrections.21 

Once j i *k  has been computed, visk can be easily obtained from (12). The validity of the continuity 
equation for follows directly from (1 2) and (1 3). For the new pressure also an underrelaxation with 
0 < ap < 1 is employed: 

Finally, the iteration step is completed by solving the energy equation 

Tizk + OAr(B:i + aTB::)Tivk = (1 - aT)(T:vk-' + OAtB$' T:.k-') + arS;lT' - aT - AtBJl;,kTl*'-' 

for Ti.', where Sz', is defined analogously to S:;' in (lo), the splitting of Bh($") is introduced 
according to that in (8) for Ah($k) and 0 < aT < 1 is the underrelaxation factor for the temperature. 

The structure and solution of the linear systems of equations (9), (13) and (15) for the different 
unknowns are discussed in Section 3.2 within the framework of the employed parallelization 
technique. The initial approximations I('', pi" and TLVo for the iterative procedure are defined either as 
the values from the preceding time level or by interpolated values from the next coarser or finer grid 
within the multigrid procedure described in the next subsection. 

Theoretical results concerning the convergence and smoothing properties of the considered pressure 
correction approach are discussed by Wittun'' in the more general setting of transforming smoothers. 

(15) 

2.3. Multigrid method 

The iterative pressure correction procedure described in the previous subsection removes efficiently 
only those Fourier components of the error whose wavelengths are comparable with the grid spacing, 
which usually results in a quadratic increase in computing time with the grid spacing. To keep this 
increase close to linear, a full approximation multigrid scheme is applied directly to the non-linear 
system (4)-(6), with the above pressure correction scheme acting as a smoother for the different grid 
levels. 
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To give a short summary of the multigrid technique, let us denote the system (4H6) on the grid with 
mesh size h by 

Kh(xh) = bh. (16) 

A h  a few iterations with the pressure correction smoother (pre-smoothing) an approximate solution 
zr, to (16) is obtained 

Kh(zh) = bh - rh, (17) 

with rh the residual. By linearkation Kh via a Taylor expansion, the following non-linear equation for 
the error eh = xh - ?h is obtained: 

Kh(zh -k eh) - Kh(?h) = rh.  (1 8) 

The left-hand side of (1 8) is an approximation of the derivative of Kh. Equation (1 8) is the basis for the 
coarse grid equation, which is defined by 

KZh(Ipzh + ezh) - Kzh(Iih?h) = Iihrh, (19) 

with Iih a suitable restriction operator. Thus, for assembling the coarse grid equation, Kh, i), and rh 
have to be restricted to the coarse grid. As coarse grid variable X z h  := Ipzh + is used, such that the 
coarse grid problem reads 

As initial value for the iterative solution of the coarse grid equation is used. After having obtained 
an approximate solution z 2 h  of the coarse grid problem, the error (only the error is smooth) is 
transferred to the h e  grid by means of an interpolation operator and the h e  grid solution is 
corrected: 

x$ = ?,, + z h ,  with #?/, = 1k(z2h - I i h X h ) .  (21) 

Additional smoothing steps (post-smoothing) are carried out to reduce high-fiequency errors which 
may be caused by the interpolation. 

It should be noted that X2h is not the solution of the system which would result from a discretization 
of the continuous system (1 H3) on the coarse grid, but is an approximation of the fine grid solution. In 
the case of convergence the coarse grid solution (where it is defined) is identical with the fine grid 
solution. 

The extension of the described two-grid procedure to the multigrid procedure is straightforward by 
applying the concept recursively to (20). For the movement through the grid levels the well-known V- 
cycle strategy is employed, which in the case of steady problems is combined with the nested iteration 
technique (full multigrid) to improve the initial guesses on the finer grids (see e.g. Reference 23). The 
problem on the coarsest grid is not solved exactly, but is approximated by carrying out some pressure 
correction iterations. Since the employed pressure correction algorithm is not only a good smoother but 
also a good solver, this does not significantly deteriorate the rate of convergence of the multigrid 
procedure. For prolongation and restriction, bilinear interpolation is used. Some more details about the 
employed multignd procedure can be found in the paper by Horhnann ez a1.2 

3. BLOCK STRUCTURING AND PARALLELIZATION 
Having discussed the general global solution procedure, we will now look in more detail at the 
employed block-structured grid approach, which is also the basis of the parallelization of the method. 
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3. I .  Block-stmctured grid partitioning 

Block-structured grids, which are globally unstructured but locally structured, can be viewed as a 
compromise between the high geometrical flexibility of fully unstructured grids and the high numerical 
efficiency achieved on globally structured grids. The important characteristic of block-structured grids 
is that the logical structure of the individual blocks, which geometrically are in general boundary-fitted 
non-orthogonal grids, is rectangular, such that a regular data structure can be used for the 
representation of the field variables and that efficient solvers available for such regular structures can 
be employed with the individual blocks. 

The coupling of the blocks along the block interfaces, i.e. the transfer of information among 
neighbouring blocks, requires special attention, especially with respect to an efficient parallelization. 
To deal with this problem, along the block interfaces, auxiliary control volumes containing the 
corresponding boundary values of the neighbouring block are introduced. The different situations that 
can occur for the block connections and the corresponding interface handling are illustrated in Figure 
2. To ensure the coupling of the subdomains, the boundary data in the auxiliary control volumes of 
neighbouring blocks have to be updated from time to time during the iterative algorithm. This will be 
discussed in more detail in the next sub-section. In addition to these local exchanges, some global 
information transfer of residuals is required for convergence checking. 

For the parallelization a grid-partitioning technique directly related to the block structuring is 
employed. The idea is to transform the block structure which results from the requirements for 
modelling the geometry (geometrical block structure) by some suitable mapping process to a new 
block structure (parallel block structure), which, in addition to the geometrical ones, also meets the 
requirements for an efficient implementation on a parallel computer. 

In general, depending on the number of geometrical blocks, M, and the number of available 
processors, P, for the mapping process two situations have to be distinguished. 

1. If M > P, the geometrical blocks are suitably grouped together so as to have as many groups as 
processors and the resulting groups are assigned to the individual processors. 

2. If M < P, the geometrical blocks are partitioned in order to obtain finally a block structure with as 
many blocks as processors and the resulting blocks are assigned to the individual processors. 

'8' 

Figure 2. Block-sfmcturcd grid connections and computational interface handling (the auxiliary CVs arc in grcy) 
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F i w e  3 .  Example of mapping and grid partitioning when there are more processors (P = 8) than blocks (M= 3) 

The two cases with the applied mapping and grid-partitioning strategy are illustrated schematically in 
Figures 3 and 4. In the case of M =  P no mapping has to be performed and the parallel block structure 
is taken to be identical with the geometrical one. 

For the parallel block structure, several requirements with respect to obtaining an efficient parallel 
implementation can be formulated: 

similar number of control volumes per processor to ensure good load balancing on the parallel 
machine 
small number of neighbouring blocks located on other processors to have few communication 
processes 
short block interfaces along blocks located on different processors to have a small amount of 
data to transfer 
avoidance of steep flow gradients across block interfaces in order to retain good coupling of the 
subdomains for high numerical efficiency 
fully automatic mapping process working for arbitrary M and P which is not too time- 
consuming compared with the flow computation. 

It is obvious that for general flow problems, as considered in this paper, not all of these requirements 
can be optimally fulfilled simultaneously and therefore some compromise has to be found. Our 
approach is mainly based on the first and last of the above criteria. Topological and flow-specific 
aspects are not taken into account. The automatic mapping is based on the simple criterion that the 
numbers of control volumes assigned to the different processors differ as little as possible. 

In the case of M > P the geometrical blocks are grouped into P subsets such that the numbers of CVs 
are similar in all subsets. This is done by taking the lexicographically first block and adding as many 
other blocks as long as the number of CVs in this first subset is smaller than NIP,  where N is the total 
number of CVs. Then the next block is assigned to the next subset and the procedure is repeated 
successively until P subsets are formed. Of course, for P= 1 this procedure also includes the serial 
case. 

For the partitioning in the case of M < P two different strategies are considered. 

Figure 4. Example of mapping and grid partitioning when there are fewer processors (P = 2) than blocks (M= 3) 
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n n 

Figure 5 .  Automatic grid partitioning by direct mapping of geometrical block structure to parallel block structure 

n n 

Figure 6. Automatic grid partitioning by recursive mapping of geometrical block structure to parallel block structure 

1. 

2. 

Direct decomposition. The processors are assigned to the geometrical blocks according to the 
numbers of CVs in the blocks and the blocks are subdivided one-dimensionally in the co- 
ordinate direction with the largest number of CVs. 
Recursive decomposition. The block with the largest number of CVs is halved in the direction 
with the largest number of CVs, resulting in a new block structure. The process is repeated until 
the number of blocks equals the number of processors. 

The principles of the two strategies are illustrated schematically in Figures 5 and 6. Which strategy is 
preferable depends on the problem geometry, the block structure used to model it and the number of 
available processors. An advantage of the recursive decomposition is that, at least theoretically, as 
many processors as there are control volumes on the coarsest grid can be used for the parallel 
computation. If direct decomposition is used, the numbex of processors assigned to a block may not be 
larger than the largest number of control volumes in one direction in this block. (However, from the 
numerical point of view it is not reasonable to use too many processors for a grid of given size.) A 
comparison of the results of direct and recursive mapping can be found in the paper by Schafer et aLZ4 

Although the mapping approaches considered for the two cases are relatively simple, they are very 
fast and have turned out to ensure good load balancing for a wide range of applications. 

3.2. Parallel linear system solver 

In order to work efficiently on a parallel computer, the crucial point in the multigrid pressure 
correction method described in Section 2 is the choice of the numerical method for the solution of the 
sparse linear systems (9), (13) and (15) which arise during the iterative solution process for the 
different unknown variables. The parallelization of the other components of the method (assembly of 
the systems, prolongation, restriction, etc.) is straightforward. Since there are no recurrences and owing 
to the auxiliary CVs, these operations can be done (in principle) simultaneously for all CVs and locally 
on the individual processors. 

For the discussion of the parallelization approach of the linear system solver, it is important to take a 
closer look at the structure of the systems, which is similar for all of them. Numbering the unknowns in 
a natural way according to the block structure, i.e. lexicographically within each block and then 
employing a block-by-block subsequential numbering, the coefficient matrix for all systems, which we 
denote commonly by My = 6, gets a block-structure of the form 
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M =  

where M is the number of blocks. The matrices Bii, i = 1,. . . J4, on the diagonal have the usual 
pentadiagonal structure resulting from a five-point discretization in one subdomain (the non- 
orthogonal contributions are neglected or treated explicitly and contained in the right-hand sides). The 
matrices B,, i, j = 1,. . . , M, i # j ,  represent the coupling of the blocks. If block i is a neighbour to 
block j ,  these matrices have non-zero entries in the main diagonal, otherwise all entries vanish. 
According to this structure, M can be split into a local part 

0 I 
and a coupling part 

& = M - M L .  (24) 

In the present approach, as linear system solver, a parallel variant of the strongly implicit method of 
Stone” is employed. It is based on an incomplete LU decomposition and in its sequential version has 
proven to work very efficiently, especially in combination with multigrid techniques (see e.g. 
Reference 26). The serial version of the method is defined by an iteration process of the form 

(25) f +1 - - f - H - ’ ( M ~  - b), 

with an incomplete decomposition A = LU of M into lower and upper triangular matrices L and U 
respectively. For our parallel version of the method an incomplete decomposition of ML instead of M 
is used: 

H =  

Thus an iteration step 

fl” = fl - (LiUi)-I BV$ - bi c:: ) 
can be carried out concurrently for all i = 1, . . . ,M, if y” is available in the auxiliary CVs for computing 
B,fl for i f j .  To achieve this, one exchange of the block boundary values belonging to different 
processors is required in each iteration. For the local decompositions LiUi, i = 1, . . . ,h4, in each block 
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the serial version of the strongly implicit method is applied. We remark that the present approach is 
closely related to the so-called multicoloured basic iterative methods discussed e.g. by Schiifer?’ 

4. NUMERICALRESULTS 

The following numerical investigations concerning the algorithmic aspects of the proposed method are 
performed on a Parsytec MultiCluster-3 transputer system with T805 processors under the operating 
system Parix1.2. How the performance of this system relates to more recent and more pow& 
systems can be seen from our study in Section 4.3, where different actual parallel computer platforms 
are involved. 

4.1. Steady flow 

First we study the properties of our solution method for a steady problem with respect to the 
interaction of the multigrid technique, the nested iteration and the parallelization. For this a buoyancy- 
driven flow in a cavity with a complex obstacle is considered. In Figure 7 the geometry with the 
numerical grid and the parallel block structure obtained from the direct mapping for 16 processors are 
shown together with the computed streamlines. The cavity walls are at low temperature and the 
obstacle walls are at high temperature, resulting in a Rayleigh number Ra = 500 based on the minimum 
distance between cavity wall and the obstacle. The Prandtl number is Pr = 6.7. For the multigrid 
method a coarsest grid with 5 12 CVs is used (in Figure 7 the third level with 4096 CVs is shown) and 
V-cycles with five pre-smoothing, five post-smoothing and 10 coarse grid iterations are employed. The 
underrelaxation factors are 0.7 for velocities, 0.3 for pressure! and 0-9 for temperature. 

In Table I the computing times and the numbers of fine grid iterations are given for the single-grid 
and the multigrid method, each with and without nested iteration, for different numbers of processors 
and grid sizes. Within the two groups of results for P = 1,4 and 16 processors and P = 2 ,8  and 32 
processors the number of control volumes per processor remains constant. 

Several conclusions can be drawn from the results. In all cases the multigrid method is significantly 
superior to the corresponding single-grid computation. While the single-grid method shows its typical 
linear increase in iteration numbers with grid refinement, the iteration numbers for the multigrid 
method change only slightly. When the number of processors is increased by the same factor as the 

Figure 7. Geometry, intermadiate grid (third level, 4096 CVs), parallel block stnrcture (16 proces9ors) and wmputal StnamlinCS 
for buoymcy-drivcn flow in a cavity with a complex obstacle 
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Table I. CPU times in minutes and numbers of fine grid iterations (in parentheses) for single-grid (SG) and 
multigrid (MG) methods with and without nested iteration P I )  for different numbers of processors and control 

volumes for buoyancy-driven flow in a cavity with a complex obstacle 

N/P = 4096 N/P = 8 192 

Method P= 1 P = 4  P= 16 P = 2  P = 8  P=32 

SG 40 (171) 133 (592) 500 (2225) 265 (592) 977 (2215) 3929 (8619) 
SG + NI 17 (58) 50 (201) 139 (556) 99 (201) 268 (550) 748 (1 496) 
MG 10 (31) 13  (41) 14 (42) 26 (41) 26 (42) 31 (46) 
MG+NI 9 (21) 10 (24) 12 (26) 20 (24) 22 (26) 21 (21) 

number of control volumes, the multigrid method gives the solution in nearly the same computing 
time, but owing to the increase in iteration numbers, this is not the case for the single-grid 
computations. If one compares for instance the results for P =  16 and 8, which correspond to equal 
grid sizes, one can see that a very good parallel efficiency is obtained. We have speed-ups of 91.9% for 
SG, 96.4% for SG + NI, 92.8% for MG and 91.6% for MG + NI. The decrease in speed-up when 
adding NI and/or MG is due to an increase in work on coarser grids, where the proportion of 
communication relative to arithmetic operations is larger. The reduction of iteration numbers and 
computing times due to the nested iteration is larger for the single grid than for the multigrid case. The 
full multigrid method is faster than MG without nested iteration. Thus the additional effort due to the 
increased number of coarse grid computations is compensated by the reduction in the number of 
iterations. 

4.2. Unsteady $ow 

For the investigation of the behaviour of our method for complex unsteady flows we consider as a 
second test problem the time-dependent natural convection in a square cavity with a circular obstacle. 
The cavity walls are at a fixed temperature and on the circular wall a time-dependent temperature is 
prescribed. The configuration with the corresponding boundary conditions is illustrated in Figure 8 
together with the numerical grid used for the computation. The Prandtl number is Pr=6-7 and the 
initial conditions at t = 0 are v1 = v2 = T =  0. The temporal flow behaviour can be seen from Figure 9, 
where the maximum vertical velocity is plotted against time. The quite complex flow structure is 

Figure 8. Configuration and b o u n d q  conditions for natural convection flow in a square cavity with a circular obstacle and 
numerical grid 
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Figure 9. Maximum vertical velocity against time for natural convection flow in a square cavity with a circular obstacle 

illustrated in Figure 10, showing the predicted streamlines for two points of time corresponding to the 
temporal maximum and minimum values of the maximum vertical velocity respectively. 

For the multigrid method a coarsest grid with 80 CVs is used (in Figure 8 the third level with 
1280 CVs is shown) and V-cycles with three pre-smoothing, three post-smoothing and three coarse 
grid iterations are employed. The underrelaxation factors are 0.7 for velocities, 0.3 for pressure and 0.9 
for temperature. In Table I1 the numbers of fine grid iterations are indicated for computing the flow 
from the initial state to t = 200 s for various grid sizes, time step sizes and processor numbers. The 
corresponding computing times are given in 'Table III. As in the steady case, the iteration numbers 
increase only slightly with the processor number. The fine grid iteration numbers decrease when the 
grid is refined, which may be due to the fact that more coarser grid levels are involved in the 
computation and less work has to be done on the fine grid. The smaller the time step size, the smaller is 
the iteration number per time step, but the total number of iterations, owing to the larger number of 
time steps, increases and therefore the total computing time is also larger. Of coarse, with a smaller 
time step a higher accuracy is also obtained. Comparing for instance the computing times for 
5 120 CVs and P = 6 with those for 20,480 CVs and P = 24, one can further see that a four times larger 
problem can be solved in approximately the same time with four times more processors. 

Figure 10. Predicted streamlines for two points of time correspondmg to the temporal maximum and minimum values of the 
maximum vertical velocity for natural convection flow in a square cavity with a circular obstacle 
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Table II. Numbers of fine grid iterations for different time step sizes, numbers of CVs and processor numbers for 
natural convection flow in a square cavity with a circular obstacle 

1280 CVs 1523 1523 1528 2656 2661 2674 4753 4754 4755 
5120 CVs 1410 1411 1423 2529 2529 2539 4617 4632 4628 

20480 CVs 1200 1204 1212 2001 2018 2034 3717 3721 3733 
81920 CVS - 965 986 - 1801 181 1 - 2847 2895 

Table 111. Computing times in hours for different time step sizes, numbers of CVs and processor numbers for 
natural convection flow in a square cavity with a circular obstacle 

1280 CVS 0.6 0-4 0-4 I .o 0.7 0.7 I .9 1.3 1.2 
5120 CVS 2.0 1-2 0.8 3.6 2.1 1.5 6.5 3.9 2.8 

20480 CVS 6.4 3.5 2.1 10.5 5.7 3.4 19.8 10.8 6.4 
81920CV~ - 10.4 5.7 19.4 10.5 - 29.9 16.3 - 

For the above test problem we have also studied the performance of the parallel multigrid method in 
comparison with the corresponding parallel single-grid method. The flow was computed with both 
methods for three different processor numbers with a fixed ratio of CVs per processor. The computing 
times, the numbers of fine grid iterations and the acceleration factors obtained with the multigrid 
method are given in Table IV for different time step sizes. One can see the increase in the acceleration 
factor with the grid size. Again with the multigrid method one can solve a larger problem in nearly the 
same amount of computing time when the processor number is increased by the same factor as the 
number of CVs. For larger time steps the multigrid acceleration factors does not depend significantly 
on the time step size. If the step size becomes smaller than a certain limit, i.e. if the asymptotic range of 
convergence with respect to time is reached, the acceleration factor decreases with the time step size. 
This limit value decreases with increasing grid size. 

Table N Computing times in hours and numbers of fine grid iterations (in parentheses) for multigrid and single- 
grid methods for different time step sizes, numbers of CVs and processor numbers (number of CVs per processor 
is fixed) and corresponding acceleration factors (with respect to computing time) for natural convection flow in a 

square cavity with a circular obstacle 

Grid At SG MG SG/MG 

20480 CVs 4.0 25.5 (3887) 11.2 (1200) 2.3 
(P=3) 2.0 43.1 (6558) 18.6 (2001) 2.3 

1 .o 55.3 (8417) 34-6 (3 17) 1.6 

81920 C V s  4.0 44-5 (5937) 10-4 (965) 4.3 
(P'12) 2.0 87.1 (11614) 19.4 (1801) 4.5 

1 .o 130.5 (17396) 29.9 (2847) 4.4 

(P = 48) 2-0 - 19.6 (1721) - 
1-0 - 30.2 (2658) - 

327680 CVs 4.0 74.9 (9727) 10.9 (953) 6.9 
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4.3. Pamllel computer aspects 

Finally, the influence of the arithmetic and communication performance of the parallel computer 
used for the computation on the efficiency of our method is studied. For this a flow around a circular 
cylinder in a channel is considered, which is computed on various parallel machines with different 
numbers of processors for various grid sizes. In Figure 11 the geometry is shown together with the 
parallel block structures used for the computations with P = 4, 16 and 64 processors. The coarsest grid 
has 256 CVs in each case and up to seven grid levels (corresponding to 1,048,567 CVs) are 
considered. In Figure 11 the third grid level with 4096 CVs is shown. Concerning the parallel 
computers, several Parsytec machines (GC/PowerPlus, PowerXPlorer, MultiCluster-3) under the 
operating system Parix as well as a Kendall Square Research KSR-1 with TCGMSG communication 
library are included in the comparison. 

In Table V the computing times for one V-cycle, which can be considered for both steady and 
unsteady problems as the basic unit of our multigrid algorithm, are given for the different cases. For all 
grid levels the V-cycle consists of five pre- and post-smoothing iterations and 10 coarse grid iterations. 
The relative processor speeds for the machines can be seen by comparing the corresponding one- 
processor results, while the relative communication performance can be estimated by a comparison of 
the ratios of the one- and four-processor results for the different machines. The values obtained by 
proceeding in this way, taking the values for the GC/PowerPlus as a reference (i.e. processor speed 
S= 100, communication speed C =  loo), are also indicated in Table c! Of course, this gives only a 
very rough estimate of the performance of the machine, to which a variety of other aspects are 
contributing, but for our purpose these values are entirely sufficient. 

In terms of parallel efficiency one can see an increase with decreasing processor speed S and with 
increasing communication speed C, because the proportion of communication relative to arithmetic 
work becomes smaller. Of course, the computing time, which is the most crucial measure in practice 
for any algorithm on any parallel machine, reduces with increasing processor speed and increasing 
communication speed. 

Figure 11. Geomctry and parallel block struchves for 4, 16 and 64 processors for flow around circular cylinder 
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Table V CPU times for one V-cycle for different grid sizes and processor numbers on various parallel computers 
for flow around a circular cylinder 

Number of CVs 

Computer P 256 1024 4096 16384 65536 262144 1048567 

- - - GC/PowerPlus 1 0.87 17.0 60.7 223.5 
(S= 1200, c= loo) 4 1.58 17.0 34.1 81.6 246.2 - - 

16 2.90 26.6 43.1 69.3 128.6 322.0 - 
64 10.43 94.3 142.2 197.6 265.1 382.2 668 

- - - PowerXPlorer 1 1.02 18.8 66.9 247.4 
(S=91, C =  152) 4 1.22 14.0 32.2 86.3 274.6 - - 

1 12-95 255.4 953.2 - - - - 
(S=6, C=471) 4 5.00 77.9 263.6 947.4 

16 3.71 38.0 97.1 284.8 969.4 - - 

KSR- 1 1 4.62 76.0 278.1 1082.7 - - - 
(S = 22, C = 287) 4 2.92 23.7 67.8 247.4 972.5 - - 

MC-3 
- - - 

5 .  CONCLUSIONS 

We have presented a parallel implicit finite volume multigrid algorithm for the numerical prediction of 
flows in complex geometries. The results in the previous sections have shown that the applied block- 
structuring technique is suitable for handling both complex geometries and parallel processing. It has 
turned out that the employed parallelization approach based on block-structured grid partitioning 
results in an efficient parallel implementation mostly retaining the high numerical efficiency of the 
powerful sequential multigrid solution procedure. 

The efficiency of the parallel implementation for a specific problem size depends strongly on the 
parallel hardware and system software, especially on the ratio of communication to calculation 
performance. If this ratio is balanced, high efficiencies are achieved. The multigrid method, in spite of 
its slightly lower efficiency in terms of parallel computing, for both steady and unsteady flows is 
clearly superior to the corresponding single-grid method. It is also more robust with respect to the 
decoupling of the subdomains due to the grid partitioning. The problem of determining an optimal 
partitioning for general geometries is a very complicated task, but for a wide range of applications 
relatively simple strategies such as considered in this work give satisfactory results. The numerical 
examples have shown that adequate efficiencies on actual parallel computers and high acceleration 
compared with serial flow computations are achieved. 

In general the results indicate that the increase in computer power due to MIMD parallel computers, 
combined with the acceleration of the multigrid technique, yields an improved computational 
performance, enlarging significantly the possibilities for reliable simulation of complex practical flow 
problems in engineering and science. 
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